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ABSTRACT

The stretching and break-up of a viscoelastic filament pulled by a

constant weight is studied numerically by a finite difference method. The

results show the following tendencies:

1. Newtonian filaments, even in the absence of surface tension, show a rapid

increase in elongation at one particular point (they *break,-there).

2. The addition of a viscoelastic polymer prevents or at least delays the

break-up, even if it makes only a small difference to shear viscosity.

3. Surface tension accelerates break-up, but even in the presence of surface

tension elasticity has a stabilizing effect.
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SIGNIFICANCE AND EXPLANATION

Elongational flows of polymeric fluids have received much attention both

because of their usefulness in distinguishing reasonable constitutive laws

from bad ones and because of their practical importance. A question which if

of great practical significance, but is poorly understood, is if and when thin

filaments or sheets of a liquid will break-up. This problem arises e.g. in

the formation of fibers, in lubrication and in problems involving atomization

into droplets. Empirically, it is well known that viscoelastic fluids are

much more stable against break-up than Newtonian fluids with comparable

viscosity, but an adequate theoretical explanation has so far not been given.

In this paper, we examine a viscoelastic filament, which is attached at

the upper end and pulled by a constant weight on the lower end. This problem

is motivated by an experiment of J. Matta. The polymer is assumed to satisfy

a particular constitutive law known as the "rubberlike liquid". The equations

for this problem are formulated and solved by a finite difference method. The

results show that Newtonian filaments break up much more easily than visco-

elastic filaments. This is the case whether or not surface tension is

present. As expected, surface tension accelerates the break-up, but even with

large surface tension, the viscoelastic filament is still more stable than the

Newtonian one.

The responsibility for the wording and views expressed in this descriptive don
susmary lies with NBC, and not with the authors of this report. )r
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A FINITE DIFFERENCE STUDY OF THE STRETCHING AND

BREAK-UP OF FILAMENTS OF POLYMER SOLUTIONS

Peter A. Markowich and Michael Renardy

1. Introduction

It is well known empirically (1], (21, (7], (91, (10], (13] that

filaments of viscoelastic fluids are much more stable against break-up than

filaments of Newtonian fluids with comparable viscosity. However, so far this

has not been well understood theoretically. Linear stability analysis of

uniform jets shows that in fact capillary instabilities should grow faster on

a viscoelastic jet than on a Newtonian jet (1], (21, [7], (9]. This has led

to the conclusion that the breakup of jets or filaments must be governed by

nonlinear effects. However, we are not aware of any precise calculations in

the nonlinear regime.

In this paper we study a problem that is motivated by an experiment

designed by J. Matta (8) for the measurement of elongational flow properties

in dilute polymer solutions. In this experiment, the fluid is slowly extruded

from a vertical nozzle and forms a drop at the nozzle tip. As this drop

reaches a critical size, it begins to fall and drags a filament behind itself.

We consider the following idealized model problem: A filament is at rest

up to time t - 0. For t > 0, one end of the filament is attached (at the

"nozzle"), the other is pulled by a constant weight (the "drop"). The visco-
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elastic fluid in the filament is assumed to obey the constitutive law for a

*rubberlike liquid' (3], [4], [12].

We use the following notation: x denotes the position of fluid

particles in a reference configuration, which may or may not agree with the

initial configuration. It is assumed that, in the reference configuration,

the filament has uniform radius 6 and length 2L, i.e. we have

x e [-L,LJ. By u(x,t) we denote the spatial position of the particle x at

time t. p denotes the density of the fluid, n the Newtonian contribution

to the viscosity, a the memory function of the rubberlike liquid law, a

the surface tension coefficient, K the mass of the weight, and g the

gravitational acceleration. The problem is then described by the following

equations (see (11])

(1.1) - Su x  pg

where

(1.2) Bu I 3n+ ft a(tsU(t) Ue)ds

x t U2 u(s) u2t)
x x

+ U-1/2
8 x

We have an initial condition:

(1.3) u(x,t) - u0 (X) , t 4 0

and boundary conditions

(1.4) u(-L,t) - u0 (-L) ,.t > 0

(.)Mu (L,t) - Mg - irS 2 [u]Iutt -

These equations are discretized by a finite difference method, which is an

adaptation of a scheme used earlier on a similar problem [6]. This method is

described in section 2.
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In section 3 we present numerical results. Particular emphasis is given

to the question of: if and when ux  shows catastrophic growth. We shall see

that, if the initial thickness is uniform (u0 (x) - x), this always happens

at the attached end. The results show that elasticity retards the growth of

ux , while surface tension accelerates it. We give a heuristic explanation of

what we believe to be the mechanism for these effects.

2. The discretization scheme

For the discretization of (1.1), we use an implicit Euler scheme in time

and symmetric difference approximations in space. This yields a stable scheme

which is first order accurate in time and second order accurate in space

[61. TO describe the scheme, we need to introduce some notations.

The grid points are t. - nk, xi - ih (i - -N,-N+I,...,N), and

approximations to u(xiltn) are denoted by u . We use the following

difference quotients:

n ui 1 - u

(2.1) n

- n i- ui-1
i k

n+l n+ n u i Ui
ui" k

n n-i
- Ic

-n ui -i
6u, k

The disoretization of (1.1) is then given by
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P8+8dun oqP + 3n 54.A4 (- )
i A (u n

(2.2) + k Ij a(t n t+1 A4.[ i M i,-j

+ A+ U(A-n)- -1/2

Of cour, A + and A -are interchangeable. For j 4 0, uj is simply

tuO(xji). If a is a finite sume of exponential., as was always assumed in our

calculations, then the sums can be evaluated recursively.

Equation (2.2) has to be supplemented by boundary conditions. These are

n+ u(-L)
u-N u.

M8 - -Mg- is{3n8(-*n..

uN An-

(2.3)

n Aun A i

N N

a n )-1/2)

Here A is a second order accurate approximation to x

un n +3n

(2.4) Au - 2 -4u- +uN
UN 2h

At each time step, (2.2), (2.3) yields a nonlinear system of equations for the

n+1 -N,...,N. This system is solved by Newton's method.

3. Numerical results

In order to test our program, we choose the following parameter values:

L - 1, p - 1, n~ 10, a(t) e -1 1, I g - 1. we used the initial

condition u (x) -x + - ,and we added inhomoqeneous terms to (1.1), (1.4)

and (1.5) in such a way that u(x) - x +-- cosh t becomes an exact solution.

Weobtained the following reuts tt 5

we reultsat t-5:



X " -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
h-O.OS u -13.27 -7.11 -3.23 -1.15 -0.27 0.03 0.33 1.21 3.30 7.19 13.51
k-0.005 u, 38.08 24.89 14.43 6.9S 2.48 1.05 2.48 6.95 14.47 25.04 38.67

ux, -72.78 -59.58 -44.91 -29.89 -14.70 0.00 14.71 29.97 45.20 60.58 77.00

h-0.05 U -13.37 -7.12 -3.25 -1.18 -0.30 0.00 0.30 1.18 3.26 7.12 13.38
k-0.001 u, 38.13 24.82 14.38 6.93 2.48 1.04 2.48 6.93 14.38 24.84 38.19

Uxx -74.30 -59.63 -44.77 -29.78 -14.66 0.00 14.66 29.78 44.79 59.711 74.76

exact u -13.37 -7.13 -3.27 -1.19 -0.30 0 0.30 1.19 3.27 7.13 13.37

ux  38.10 24.75 14.36 6.94 2.48 1.0 2.48 6.94 14.36 24.75 38.10

-74.21 -59.37 -44.53 -29.68 -14.84 0 14.84 29.68 44.53 59.37 74.21

The computed solutions are in good agreement with the exact solution. For the

following calculations, we chose the mesh sizes k = 0.001, h - 0.05 or less.

We chose parameter values roughly in the range of Matta's experiments,

reported in (8]. (All the following numbers are in CGS - units). We picked

1
L 1, 6 =T and u0 (x) = x, i.e. we start with a uniform filament of

M

length 2 cm and radius I mm. We took n = 10, p = 1, 1 = 0 and g =

20 (in Matta's experiment, the drop falls into another fluid rather than into

air). For the surface tension parameter, we chose the values 0 = 0, a = 1

and a - 10 (the last one is realistic), and for the memory function we used

a = 0, a - e-t  and a = 10e-t . It should be noted that a = e t  increases

the shear viscosity by only 10%, while a = 10e -t doubles it.

The computed results for the Newtonian fluid show a pronounced boundary

layer at x = -1. This is illustrated by Figure 1, which was obtained for

a - 0, h - 0.05 and k = 0.001. As would be expected, the effect of the dis-

cretization is to diminish the rapid growth of ux and the real values for

Ux(-I) are even larger. This is illustrated by the following table, which

compares values of ux(-l) and uxx(-1) for two different values of h:

i -5-
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h - 0.05 h = 0.005

u u
t Ux(- ) Uxx(-I ) - Ux(-1 ) Uxx(- I) --

xx 2x2

x x
0.5 3.34 -3.62 -0.65 3.35 -3.75 -0.67
0.6 5.02 -9.47 -0.63 5.06 -10.21 -0.66
0.7 7.84 -25.19 -0.59 8.01 -29.85 -0.66
0.8 12.68 -66.07 -0.51 13.38 -94.63 -0.66
0.9 20.81 -162.94 -0.42 23.65 -326.42 -0.65
1.0 33.85 -362.52 -0.32 44.23 -1201.38 -0.61

The second column shows a more rapid growth of ux and in particular of Uxx.
uxx

The quantity -- should theoretically be independent of t, as one can
x

easily deduce from the equation. Away from x = -1, the computed values are

almost identical. We believe it is likely that, in fact, the values of

uxx(-1), ux(-1) tend to infinity in finite time, but it would take rather

strong mesh refinements to verify this numerically.

As expected, the presence of surface tension accelerates the growth in

the boundary layer. The following table shows some computed values of u (-I)

and ux(-O.8) (h - 0.005, k = 0.001):

0- a= 1 a=10

t Ux(-l) Ux(-0.s) Ux(-l) Ux(-0.8) Ux(-l) Ux(-0.s)

0.5 3.35 2.80 3.35 2.77 3.38 2.48
1.0 44.23 9.62 65.63 9.20 1731.19 1.37

1.5 906.72 16.11 2372.01 11.96 4791.56 0.35

2.0 3980.76 20.50 8108.24 9.43 9085.79 0.16

The table shows that the effect of surface tension at a - 1 is relatively

slight, but is large at a - 10 (a realistic value).
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Elasticity has the effect of smoothing out the boundary layer and

delaying the rapid growth of ux(-l). The following talbe shows computed

values for ux(-1), ux(-08) at t - I (h = 0.005, k = 0.001):

a= 0 a= 1 a-10

iUx(-1) ux (-0.8) Ux(-1) ux (-0.8) Ux(-1) Ux(-0.8)

a(t) - 0 44.23 9.62 65.63 9.20 1731.19 1.37

a(t) - e-t 23.38 10.29 26.53 10.21 68.78 3.51

a(t) - 10e-t 9.63 8.30 9.79 8.36 13.07 9.9

We can clearly see that even small amounts of elasticity have a substanti I

stabilizing influence.

An interesting feature arises in the case a(t) e t', a 1 (Figure

2). We see a step in the surface at approximately x = -0.1. In fact, the

computed values at t = 10 are ux(-0. 2 ) - 478.43, ux(O.0) = 1.74. Roughly

half the filament (x < -0.1) is stretching, while the other half is actually

shrinking and ultimately absorbed into the drop. This sort of feature does

not occur if surface tension is absent.

A key to a qualitative understanding of the mechanism governing these

results may be in results found by Petrie (10] and Fenardy [5], (11]. They

discuss stretching of a filament of uniform thickness with no inertia. The

1filament is stretched by a force pulling the ends. In the Newtonian case the

length of the filament can reach infinity in finite time, even for a finite

force. This is because the filament gets weaker as it gets thinner, and there

can be a catastrophic growth. Elasticity of the fluid opposes this, and for

the model studied here, a blow-up is impossible.

I-8
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In the present situation, the stretching of the filament is very inhomo-

geneous and this is mostly due to the influence of gravity. The filament

.wants"S to fall, but is prevented from doing so at x = -1. Thus, it

stretches most rapidly at this particular point. Our results show a qualita-

tive similarity to those mentioned above: In the Newtonian case we find

catastrophic growth at the weakest point of the filament. Elasticity

suppresses or at least delays this effect.

in the previous calculations, breaking of the filament always took place

at x = -1. In experiments, this is usually not the case for two reasons:

1. The filament is not really "attached" at the upper end. Instead,

fluid is still supplied from the nozzle.

2. The assumption of a homogeneous filament as initial state is not

realistic.

We did some calculations with the initial value uo(x) = 1.25x - 0.25x0

corresponding to a filament that is thinner in the middle. otherwise we used

the same parameters as above. The following table shows the values of u

at t =2 for a Newtonian filament and a = 0 and 10 (the step sizes are

again h =0.005, kc 0.001):

x u(x,t=2), a =0 u(x,t=2), a =10

-1 -1.00 -1.00

-0.8 -0.21 -0.98
-0.6 7.22 -0.95
-0.4 17.97 -0.92
-0.2 26.30 -0.85

0 31.75 29.10
0.2 34.86 29.14
0.4 36.50 29.17
0.6 37.37 29.19
0.8 37.83 29.21
1.0 38.06 29.23

The second column shows that the filament breaks somewhere between x -- 0.2

and x -0.
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